Clinical Trial Readiness

Joel S Perlmutter Elliot Stein Family Professor Neurology, Radiology, Neuroscience, Physical Therapy & Occupational Therapy Washington University in St Louis

Financial Disclosures:

Salary & Grant Support: NIH (NINDS/NCATS), DMRF, Washington U., American Parkinson Disease Association (APDA), Greater St. Louis Chapter of the APDA, McDonnell Center for Higher Brain Function, Barnes-Jewish Hospital Foundation, Huntington Disease Society of America, CHDI, Fixel Foundation, Oertli Fund, MJ Fox Foundation, Murphy Fund, U Michigan, U Toronto, Paula C & Rodger Riney Parkinson Disease Fund

Honoraria: U Rochester; American Academy of Neurology, Emory U, St Louis U, CHDI, Stanford U, U Florida, Huntington Study Group, U Penn, Beth Israel (Harvard U), Huntington STUDY Group, Parkinson Study Group, U Illinois in Chicago (biscotti), Boston U

Speaker's Bureau: none

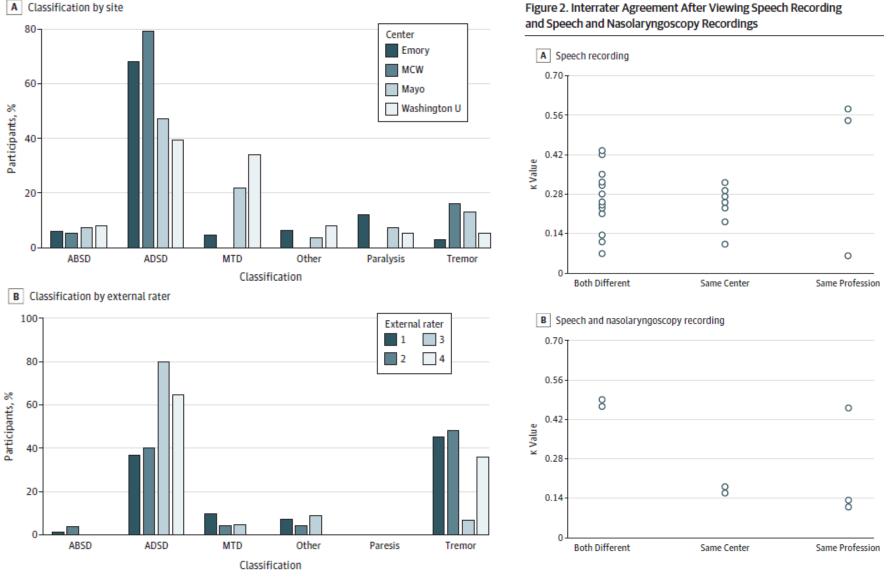
Equity & Consulting Agreements: none

Clinical Trial Readiness

Diagnostic criteria -DC Metrics of severity - DC natural history response to current therapies **Biomarkers - DC Clinical Trial Endpoints - DC Therapeutic interventions**

Diagnostic Criteria

Homogenous cohorts is it dystonia? - DC dystonia subtypes? - DC


Generalizable results - DC

Diagnostic Criteria

Laryngeal dystonia – DC Blepharospasm - DC Cervical Dystonia – DC (subtypes) Limb dystonia

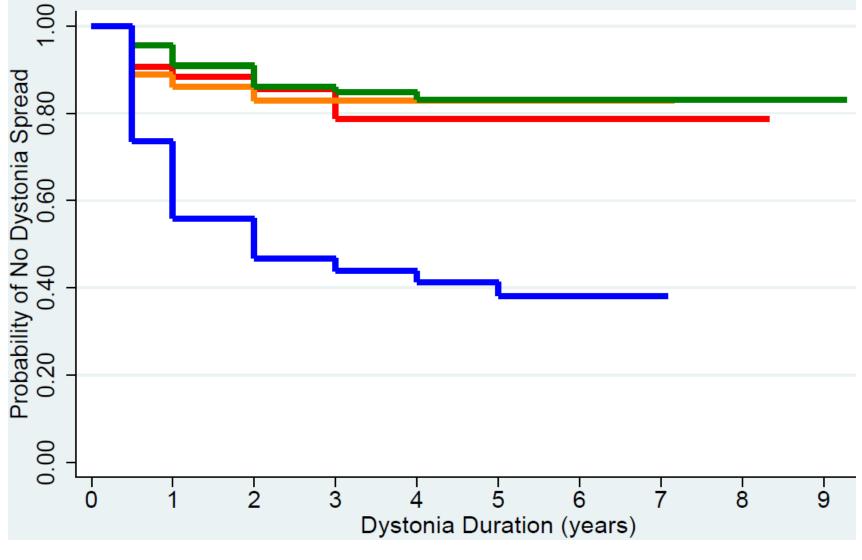
Task-specific dystonia musicians' dystonia

Laryngeal Dystonia: Diagnosis-DC

Ludlow C, et al, JAMA Otolaryng 2018

Blepharospasm: DC

1" step Self-administ blepharospas questio	am screening		377 subjects (211 cases and 166 controls)	
2° step Answering YES and/or 5	-		250 subjects (179 cases and 71 controls)	
3° step Neurologic e by diagnostic		Algorithm 123 165 case-patients/ 15 control subjects identified as affected by Blepharospasm	Algorithm 124 164 case-patients/ 15 control subjects identified as affected by Blepharospasm	Algorithm 1234 170 case patients / 18 control subjects identified as affected by Blepharospasm
	Sensitivity Specificity	78% (165/211) 91% (151/166)	78% (164/211) 91% (151/166)	81% (170/211) 83% (138/166)


DeFazio G, et al, submitted

Metrics of Severity (severity vs spread)

General dystonia ratings

Specific rating scales Cervical Dystonia Blepharospasm Laryngeal dystonia

Natural History: Spread - DC

Berman B et al, JNNP 2020

Factors related to progression-DC

Table 3. Influence of BoNT on HR-QoL within 1 yr

	Group	Time	Group*Time
General Health (n=72)	p = .18	p = .73	p = .610
Physical Functioning (n=72)	p = .51	p = . 27	p = . 58
Physical Role Functioning (n=72)	p = .93	p = .01	p = . 54
Pain (n=71)	p = . 98	p = . 56	p = . 17
Energy/ Fatique (n=72)	p = .60	p = .01	p = . 46
Emotional Well-being (n=72)	p = .004	p = .02	p = . 54
Emotional Role Functioning (n=71)	p = .30	p = .07	p = .79
Social Functioning (n=72)	p = .03	p = .02	p = .68

Junker J et al, submitted

Metrics of Severity: Effects of Interventions

Transient: Chemodenervation yo-yo Long term: Surgical but still time dependent

A Biomarker

Objectively measured indication of normal biologic process, pathogenic process or drug response

Fleming et al, Ann Intern Med, 1996

Biomarkers

Diagnostic - DC Metric of Severity - DC Prediction of progression - DC Endpoints of a clinical study surrogate endpoints What is a Primary Endpoint of a clinical study?

Clinically important event:

- -- death, stroke or MI
- -- disability, quality of life
- Categorical (e.g. need assistive walking device)

Continuous (e.g. time to walk a specified distance)

Bucher, et al: JAMA 1999; 282: 771-777

Power of a Clinical Trial Depends on:

- Clinically relevant effect of intervention on the Primary Clinical Endpoint
 - Sample size
 - Variance of measurement
 - Duration of Study
 - Effect Size

Surrogate Endpoint

A biomarker that can substitute for a clinically meaningful endpoint

Validation of a Biomarker as a Surrogate Endpoint

• Biomarker & clinical outcome:

Strong, consistent & independent Biomarker response must be strong enough to predict

Biomarker predicts efficacy <u>& toxicity</u>

Therapeutic Candidates

Rationale Safety Efficacy Dose **Target Engagement** Phase 1, 2, 3 trials

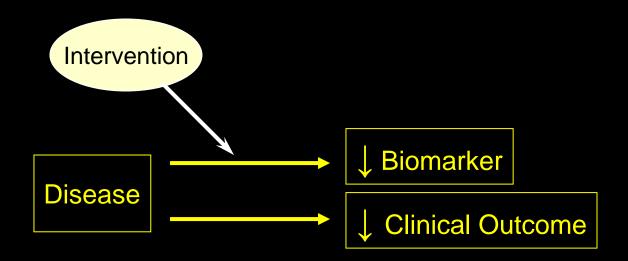
Acknowledgments

REVIEW published: 08 April 2021 doi: 10.3389/fneur.2021.660909

The Dystonia Coalition: A Multicenter Network for Clinical and Translational Studies

Gamze Kilic-Berkmen¹, Laura J. Wright², Joel S. Perlmutter³, Cynthia Comella⁴, Mark Hallett⁵, Jan Teller⁶, Sarah Pirio Richardson⁷, David A. Peterson⁸, Carlos Cruchaga⁹, Codrin Lungu¹⁰ and H. A. Jinnah^{1,11*}

NIH (NINDS, NCATS), PAGS (DMRF, NSDA, etc)


The Important Issue of the Primary Endpoint

• The Primary Clinical Endpoint should be chosen for its <u>clinical importance to patients</u>, **NOT** to minimize the sample size or duration of the study

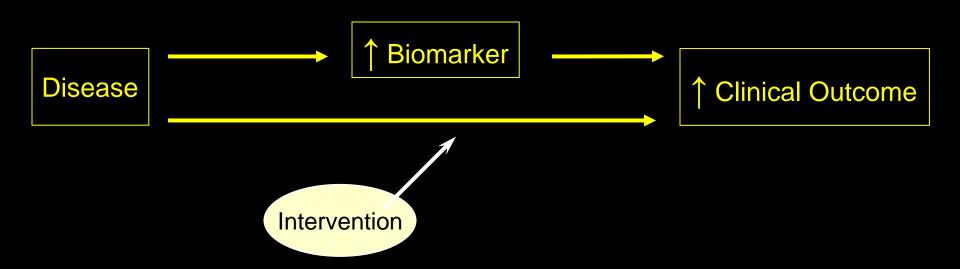
Why use a surrogate endpoint?

• <u>If</u> treatment effect is greater or measurement variability is less <u>then</u> sample size or study duration decreases

Failures of Biomarkers as Surrogate Endpoints

The biomarker is not in the causal pathway of the disease process that affects outcome

Fleming, T. R. et. al. Ann Intern Med 1996;125:605-613


Failure of a Biomarker as Surrogate Endpoint

Efficacy of encainide after myocardial infarction

(CAPS Am J Cardiol 1988; 61:501-9; CAST NEJM 1991; 324:781-8)

	Encainide	Placebo
VPC Suppression	79%	37%
Mortality	7%	3%

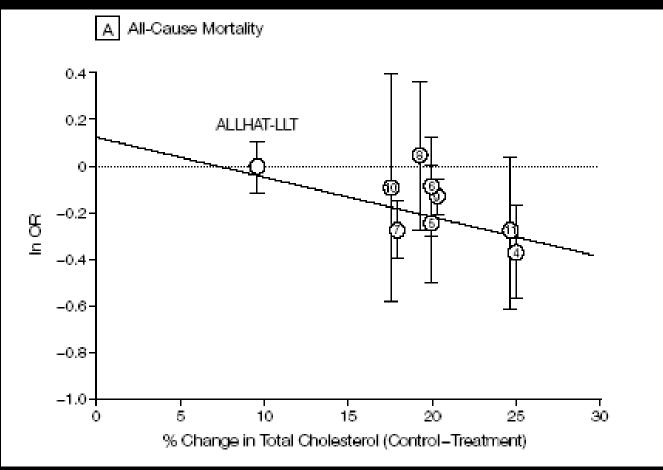
Failure of biomarkers as Surrogate Endpoints

The biomarker is not in the pathway of the intervention effect on the disease process

Fleming, T. R. et. al. Ann Intern Med 1996;125:605-613

Failure of biomarkers as Surrogate Endpoints

The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT)

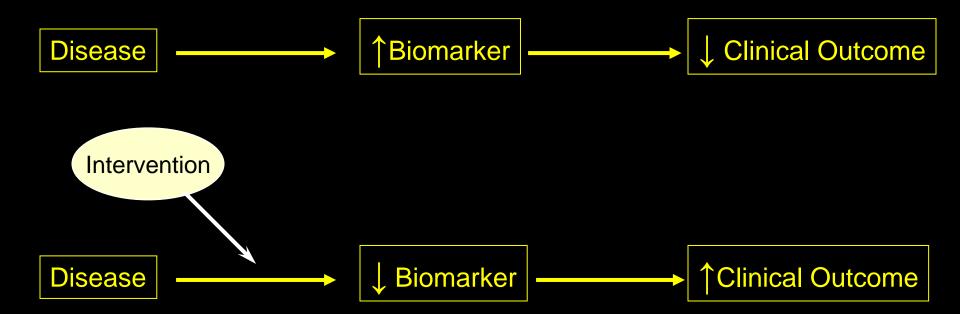

JAMA 2002;288:2998-3007

Treatment Group

	Pravastatin 40 mg/day	Usual Care	p value
Cholesterol	177.6 <u>+</u> 33.8	195.5 <u>+</u> 37.3	< .0005
All Deaths	631	641	.88

Reductions in Mortality vs Total Cholesterol Difference

JAMA 2002;288:2998-3007.


Log odds ratios (In OR) and 95% confidence intervals for active treatment vs control for 9 large statin trials are compared with regression lines (solid) from meta-analyses of 45 long-term trials using statins and other cholesterol-lowering interventions published before December 31, 2000

Failure of biomarkers as Surrogate Endpoints

A statistically significant change in the biomarker may not be of sufficient magnitude to produce a change in clinical outcome

Optimal situation for a biomarker to be a valid surrogate endpoint

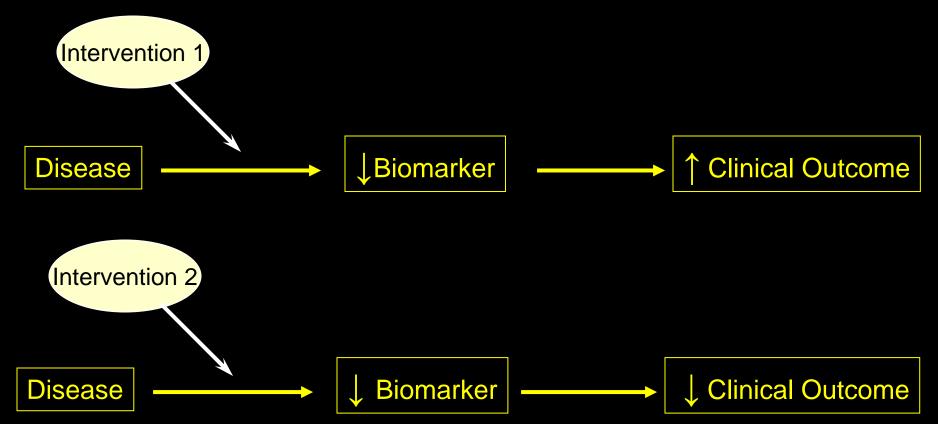
Changes in the biomarker mediate all of the effect of the intervention on clinical outcome

Fleming, T. R. et. al. Ann Intern Med 1996;125:605-613

Aspirin v. aspirin + clopidogrel for prevention of stroke

(CARESS Circulation 2005; 1112233-2240; MATCH Lancet 2004; 364:7331-337)

ASA ASA + CPD


<u>7 days</u>

TCD Cerebral Emboliat 7 days73%44%

18 months

Stroke	9%	8%
Life threatening Bleeding	1%	3%

Some reasons for failures of Biomarkers as Surrogate Endpoints

A biomarker that is a valid surrogate endpoint for one therapeutic mechanism/drug class may not be valid for a different therapeutic mechanism/drug class

Clinical Trial Endpoints

Clinically meaningful

Surrogate endpoints

Primary Endpoint

- Primary Clinical Endpoints can be
 - Life Events (e.g. need assistive device to walk)
 - Quantitative Measurements (e.g. time to walk a specified distance)

Take Home Message

Biomarker of Efficacy: reflect action of therapy reflect relevant pathophysiology

Classification Scheme

Axis 1: clinical features age of onset body distribution temporal pattern associated features isolated combined

Albanese A, et al, Mov Disord 2013

Classification Scheme

Axis 2: etiology CNS pathology inherited or acquired inherited acquired idiopathic

Albanese A, et al, Mov Disord 2013