

Biobank Project: Progress & Plans

Carlos Cruchaga, PhD

Joel S Perlmutter, MD

Dystonia Coalition Biobank

Goals for the Biobank

- To extend the current DNA repository by targeting BSP, LD and limb dystonia subjects as well as multiplex families.
 - Sporadic and familial presentations
 - Longitudinal (each visit)
- To develop a centralized repository of other blood-based materials
 - DNA
 - RNA
 - Plasma
- To identify novel genetic and proteomic factors for dystonia risk
- To identify genetic and proteomic factors that influence spread of dystonia

Current Biobank: DNA Available

Older and New sample visits

New sample only

Biobank: 2020-2022

Samples Received per year

Samples include: DNA, RNA and plasma

260/280 260/230 **Concentration** MIN 42.97 1.73 0.7 MAX 370.90 1.92 2.64 AVERAGE 181.34 2.02 1.84

MIN

MAX

7.74

69.66

RNA quality

DNA quality

Genetic Characterization of DC participants

Polygenic risk scores for Dystonia

- 1. Obtain GWAS summary statistics (p-values and β 's) in largest possible **discovery sample**
 - 1. Alzheimer's disease: Bellenguez et al 2023
 - 2. Parkinson disease: Kim et al 2022
- 2. Obtain independent target sample (this is the Dystonia samples) with Genome-wide data
 - 1. Use **SNPs in common** between the two samples. Deal with **association redundancy due to LD**.
 - 2. Restrict to **SNPs with p <** $5x10^{-8}$ for the disease GWAS
 - 1. We calculated PRS for AD, PD and FTD
 - 3. **Construct PRS** = Sum of Risk Alleles weighted by β from regression.

Polygenic Risk Score Analysis

Association results of extreme tertiles of the PRS at genome-wide threshold derived for each of the AD, PD, and						
FTD categories and compared to Dystonia Vs controls.						
Variable	Odds Ratio	2.50% CI	97.50% CI	P value	N Cases	N Controls
AD with APOE PRS	0.698	0.618	0.788	6.505 × 10 ⁻⁹	2024	7607
AD without APOE PRS	0.789	0.698	0.892	1.567 × 10 ⁻⁴	2024	7607
PD PRS	0.872	0.773	0.984	2.675 × 10 ⁻²	2024	7607
FTD PRS	1.054	0.933	1.190	3.961 × 10 ⁻¹	2024	7607
N – Number of samples in each category CI – Confidence interval PRS – Polygenic risk score APOF – Apolipoprotein						

AD - Alzheimer's disease, PD- Parkinson's disease, FTD – Fronto temporal dementia.

- 1. Dystonia cases are depleted for AD risk variants, independently of APOE
- 2. Dystonia cases are depleted for PD risk variants
- 3. No differences for FTD

Genome-Wide Association studies

- Obtaining GWAS data for all samples.
 - Previous studies by Sun et al, 2021 already identified one genome-wide significant
 - 919 cases and 1,491 controls
 - Chromosome 3 signal is close upstream of COL8A1
 - Defects in COL8A1 are associated with corneal dystrophy and age-related macular degeneration.

• A larger GWAS in collaboration with Dr. Klein is ongoing with > 5K cases

• PRS analyses suggest very low overlap with AD, but some overlap with PD

Goal: identify causal and druggable targets

۲

•

ullet

A Metabolomic Study of Cervical Dystonia

Parkinsonism and Related Disorders 82 (2021) 98-103

- Plasma samples from 100 cases with idiopathic cervical dystonia and 100 controls
- 7,346 metabolic features remained after quality control
- 289 significantly associated with case-control status

Other omic studies

- Proteomics:
 - 50 controls and 150 dystonia cases
 - See poster by Jigyasha Timsina
 - Emory-WU collaboration
 - Manuscript being drafted
- Transcriptomics
 - RNA available for all new samples
- Methylation
 - Biological vs chronological clocks
 - Differential methylation

Proteins dysregulated in LD

Significance level

Upregulated
Downregulated
Not-Significant

Summary

- The goals is to obtain samples that will allow deep molecular characterization the DC cohort
 - Genetic (GWAS, WGS), epigenomics (longitudinal), transcriptomics (longitudinal), proteomic (longitudinal), metabolomic and lipidomics
- Deep molecular phenotyping of well clinically characterized cohorts will lead to the identification of:
 - Novel genes and pathways implicated on the diseases
 - A deeper understanding pathologic events
 - Novel molecular phenotypes
 - Novel therapeutic targets
- The multi-omic data (genetic, epigenetic, transcriptomic, proteomic, metabolomic, between others) will allow to a more personalize prediction of disease risk and treatment

Q & **A**

Biobank (BB) Project Washington University in St. Louis

Cor PI: Carlos Cruchaga. PhD <u>cruchagac@wustl.edu</u> Study Coordinator: Jen Gentsch <u>j.gentsch@wustl.edu</u> Study Coordinator: Joanne Norton <u>nortonj@wustl.edu</u>